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Abstract
3D graphics are evolving media type used in all aspects of technological areas of today. Increase in demand on 
3D graphics pushes technological advancements on 3D scan technology and approximation methods to next 
level which then results more complex and highly detailed large 3D raw data.  us, it is crucial to compress 
these graphics data effi  ciently. Over the last two decades many algorithms have been proposed to compress these 
raw 3D data especially for compact storage, fast transmission, and effi  cient processing. Compression methods 
are branching among themselves. In this paper, 3D compression methods are summarized in a taxonomical 
fashion. A special attention is paid for the main ideas behind the single-rate compression algorithms and their 
contribution to 3D mesh compression technology.  e advantages and the drawbacks of each algorithms are 
discussed to pave the road for the future 3D compression researchers.
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Ɂ. INTRODUCTION

Nowadays 3D data can easçly be confronted on anywhere çn any complexçty such as; aerospace models, automotçve CAD 
datasets, archçtectural walkthrough, vçrtual envçronments, computer games, scçentçfçc sçmulatçons, medçcal çmagçng, etc. 
 Wçth the help of evolvçng 3D scan technology, 3D graphçcs have gaçned wçdespread acceptance.  e advancements çn 
modelçng algorçthms and methods lead us to delçver hçghly complex 3D models that requçre a consçderable amount of 
space and bandwçdth whçle transferrçng and vçsualçzçng data especçally on a network. 

3D models consçst of enormous amount of data that need to be represented wçth proper methods. 3D meshes are by 
far the most popular polynomçal dçscrete representatçon method of 3D surfaces. Among the polynomçal representatçon 
methods, trçangulatçon has been preferred due to theçr algorçthmçc sçmplçcçty, ease of calculatçons on GPU sçde, and 
dçsplayçng eff çcçency.

Current hçgh-tech graphçcs cards are partçally specçalçzed çn renderçng thçs 3D representatçon method and become 
avaçlable çn all parts of our lçfe lçke smartphones, tablets, personal computers, vçrtual realçty goggles, smart watches etc. 
 anks to these graphçcs cards and varçous algorçthms 3D models can be vçsualçzed or edçted by specçal softwares almost 
on everywhere. On the other sçde, the large sçze of 3D mesh data force thçs actçve research area to expand on compressçon 
çn order to satçsfy demands on 3D graphçcs. 

 ɂ. BACKGROUND & MESH BASICS

Trçangular mesh consçsts of three entçtçes: vertçces, edges, and faces. Edges are lçnes that connectçng vertçces. Faces 
are closed surfaces formed by edges. On çts most basçc form, trçangular meshes are represented by geometry and theçr 
connectçvçty (also called topology or structure) çnformatçon. Geometry descrçbes poçnt locatçons on 3D cartesçan space 
for each vertex and may also descrçbes normal vector values for each face. Besçdes that, connectçvçty specçfçes adjacency 
relatçonshçp of mesh elements.
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Fçgure 1 Non-mançfold vertex (left), A non-mançfold edge (center) has more than two çncçdent faces, (rçght) example confç-
guratçon of a non-mançfold but can be handled by most of the data structures [1]

Ƀ. SINGLE-RATE MESH COMPRESSION

Sçngle-rate (mono resolutçon) compressçon algorçthms requçre all the geometry and connectçvçty çnformatçon of the 
model as a whole to encode/decode. Later progressçve meshes have demolçshed thçs dependency. Most of the mesh 
compressçon algorçthms treat geometry and connectçvçty çnformatçon separately. Early works are mostly focused on 
connectçvçty çnformatçon whçch çs by far the bçggest part of 3D raw data.  e eff çcçency of a compressçon algorçthm çs 
usually compared and measured by b/v that shows how many bçts per vertex are used to encode a 3D mesh.  e standard 
representatçon for uncompressed polygon meshes uses a lçst of vertex coordçnates to store geometry and a lçst of vertex 
çndçces for each face to store mesh connectçvçty.

3.1 Geometry CompressȜon
Geometry data of vertex coordçnates are often stored çn 3-tuple (x, y, z) that çs coded çn IEEE 32-bçt ì oatçng poçnt repre-
sentatçon.  us, çt domçnates quçte an çmportant part of the whole 3D data. Also, geometry compressçon çs challengçng, 
because, çt deals wçth ì oatçng poçnt numbers rather than çntegers as çn connectçvçty compressçon.  e 8-bçt exponent of 
32-bçt IEEE ì oatçng-poçnt numbers allows posçtçonçng of the known unçverse: from 15 bçllçon lçght years, down to the 
sub-atomçc partçcles.  at much precçsçon çs, obvçously, not needed for 3D modellçng. Reducçng precçsçon by applyçng 
quantçzatçon can sçgnçfçcantly lessen data sçze wçthout recognçzable qualçty loss. Some applçcatçons tolerate a certaçn 
amount of precçsçon loss çn order to achçeve hçgher compressçon rates.

Generally, geometry compressçon begçns wçth quantçzatçon of vertex coordçnates. Afterwards, rather than encodçng poçnt 
coordçnates dçrectly, çt uses a predçctçon scheme to locate next vertex poçnt wçth the help of already encoded neçghbors. 
 ere are varçous quantçzatçon methods, çncludçng Delta Dçff erence Quantçzatçon, Separate Quantçzatçon, Global Qu-
antçzatçon, and Vector Quantçzatçon etc.

3.2 ConnectȜvȜty CompressȜon
Eff çcçent encodçng of the mesh connectçvçty has been studçed extensçvely. Prevçous researches on sçngle-rate compressçon 
have been mostly dedçcated to connectçvçty codçng and many technçques have been proposed and most of them were 
desçgned for fully trçangulated meshes.

 e connectçvçty çnformatçon summarçzes whçch mesh elements are connected to each other. Faces are surrounded by çts 
composçng edges and all the vertçces of çts çncçdent edges.  e edges have no dçrectçon. Two types of mesh connectçvçty 
are common çn mesh representatçons. One of them çs edge connectçvçty whçch çs lçst of edges çn the mesh and the other çs 
face connectçvçty whçch çs lçst of faces çn the mesh. 

Ʉ. ALGORITHMS
Maçn approaches are based on trçangle strçps, spannçng trees, trçangle traversal, and valence encodçng. Pçoneerçng trç-
angle based connectçvçty drçven sçngle-rate mesh compressçon algorçthms accordçng to maçn approaches are gçven çn the 
followçng.

4.1 A trȜangle strȜp based encodȜng algorȜthm; Geometry CompressȜon [2] (GC)
In 1995 Deerçng proposed Geometry Compressçon algorçthm whçch then led researchers to work harder on 3D mesh com-
pressçon fçeld for better compressçon rates. GC, fçrst, converts trçangle mesh data çnto generalçzed trçangle strçp format 
that can be seen çn Fçgure 2. Trçangle strçps are sequence of vertçces where each new vertex defçnes a new trçangle conne-
cted to prevçous trçangle wçth two prevçously known vertçces. Each trçangle çs usually adjacent to the prevçous trçangle by 
usçng second and thçrd vertçces of prevçous one. Connectçvçty çnformatçon çs kept on trçangle strçp form. Trçangle strçps 
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do not pay off , çf we cannot buçld long enough strçps, whçch çs a challengçng computatçonal geometry problem.

On the other hand, geometry çnformatçon çs also extensçvely processed for GC that uses quantçzatçon methods for 
posçtçons, colors, and normals.  e quantçzed data encoded wçth delta compressçon followed by a modçfçed Huff man 
compressçon. Empçrçcally most geometry çs local, so the delta dçff erence between one vertex and the next was expected 
to be fçt çn less than 16 bçts çn sçgnçfçcance.

GC çs fast and works on board whçch made çt well suçted for hardware çmplementatçons. GC algorçthm reached 8-11 
b/v levels for connectçvçty çnformatçon whçch was quçte a good start for 3D mesh compressçon. Sçnce then, varçous çm-
provements have been made çn Geometry Compressçon algorçthm by several researchers [6][7]. Later on, GC algorçthm 
has been çntegrated çn Java 3D.

Fçgure 2 Generalçzed Trçangle Strçp and Mesh - Deerçng 1995 Geometry Compressçon [2]

4.2 A spannȜng tree based encodȜng algorȜthm; Geometry CompressȜon Through TopologȜcal Surgery (TS) [4] 
Topologçcal Surgery algorçthm encodes a trçangular mesh wçth about 2.5 to 6 b/v thanks to the spannçng trees: a vertex 
and a trçangle spannçng tree whçch can be seen on Fçgure 3.  e çdea çs to cut a gçven mesh along a selected set of edges 
to make a planar mesh.  e mesh connectçvçty çs then represented by these cuts and planar mesh, producçng 1 b/v for 
almost regular meshes and 4 b/v on average, otherwçse. TS algorçthm off ered an çmproved and extended way to use a 
vertex spannçng tree to predçct the posçtçon of each vertex from çts ancestors çn the tree. Connectçvçty encodçng çs loss-
less. Geometry çs predçctçvely encoded.  e correctçon vectors are entropy encoded. Normals, and colors are quantçzed. 
Obtaçnçng the optçmal spannçng tree çs an NP-hard combçnatorçal problem.

Later on, the researchers [9][10] have suggested othe r data structure models to save spannçng trees. 
TS algorçthm çs çmplemented çn MPEG4-3D.

Fçgure 3 (A) An octahedron mesh, (B) Its vertex spannçng tree, and (C)  e cut and ì attened mesh wçth çts trçangle span-
nçng tree shown by dashed lçnes.[19]

4.3 A trȜangle traversal based encodȜng algorȜthm; Edgebreaker (EB) [5]
Edgebreaker compressçon stores the connectçvçty çnformatçon as CLERS strçng. It encodes a mesh çn a spçralçng dep-
th-fçrst spannçng-tree traversal order and generates one symbol (eçther one of C, L, E, R, S) for each trçangle. Each 
symbol represents a relatçonshçp between a gate and a vertex on a trçangle Fçgure 4. EB uses çts own data structure, 
corner-table [17], as çnput. Geometry çnformatçon çs stored çn corner table çn a predetermçned order. EB’s encodçng 
algorçthm çs applçed only on connectçvçty çnformatçon. Orçgçnal EB algorçthm encodes “C” wçth one bçt, but “L, E, R, 
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S” wçth three bçts whçch later çmproved. EB have started another branch on mesh compressçon whçch start wçth 4 b/v for 
worst case scenarço and researcher have enhanced EB algorçthm for worst case scenarço further wçth 3,67 b/v and even 
3,55 b/v. [11] [12] [13] [14]

Fçgure 4  e fçve confçguratçons of the Edgebreaker algorçthm. v çs the center vertex and X çs the current trçangle.  e actçve 
gate çs the blue edge. C: there çs a complete trçangle fan around v. L: there are mçssçng trçangles at the left of the actçve gate. 

R: there are mçssçng trçangles at the rçght of the actçve gate. E: v çs only adjacent to X. S: there are mçssçng trçangles elsewhere 
than the left or the rçght of the actçve gate. [8]

4.4 A valence based encodȜng algorȜthm; TrȜangle Mesh CompressȜon (TG98) [3]
Trçangle Mesh Compressçon encodes the valence of every vertex along the vertex spannçng tree çn a depth-fçrst determç-
nçstçc traversal.  e connectçvçty çs encoded by the valence of the çnserted vertçces, typçcally accumulated around sçx 
connectçons.  erefore, the generated lçst of vertex valences can be eff çcçently compressed by an entropy coder (2.3 b/v). 
Generally, çt stores; the connectçvçty as a sequence of vertex degrees, geometry as a sequence of vectors whçch corrects 
the predçctçon of a vertex posçtçon. TG98 çs seen as one of the most eff çcçent connectçvçty compressçon method even 
for today. TG98 not only works on connectçvçty but also apply predçctçon algorçthm, parallelogram rule, on geometry 
çnformatçon.

Later on, çt çs çmplemented çn Vçrtue3D. Further çmprovements and optçmalçty dçscussçons have been made çn [15] and 
[16].

Ʌ. CONCLUSION

3D m esh compressçon maçnly focuses on connectçvçty compressçon because of the fact that geometry compressçon does 
not go further than lossy quantçzatçon, predçctçon and statçstçcal codçng methods.  erefore, prevçously çntroduced com-
pressçon methods are evaluated accordçng to compressed connectçvçty çnformatçon.

Geometry compressçon was çntroduced by Deerçng 95 çn hçs pçoneerçng work [2]. GC compresses 3D geometry çn lossy 
fashçon. A generalçzed trçangular mesh çs formed by combçnçng generalçzed trçangle strçps wçth a vertex buff er. GC uses a 
fçrst-çn-fçrst-out (FIFO) vertex buff er to store the çndçces of up to 16 recently vçsçted vertçces. It trçms out least sçgnçfçcant 
bçts vça varçable levels of quantçzatçon. GC achçeves to shrçnk 3D mesh data down to 1/6th - 1/10th of orçgçnal fçle.

Topologçcal Surgery algorçthm relçes on ancestors çn the tree to predçct vertex posçtçons.  us, çt only needs to encode the 
dçff erence between predçcted and actual vertex posçtçons. When vertex coordçnates are quantçzed these correctçve vectors 
have, çn average, smaller magnçtude than absolute posçtçons and can therefore be encoded wçth fewer bçts.

Edgebreaker algorçthm çs a fçnçte state machçne to compactly descrçbe mesh connectçvçty that guarantees the 4 b/v worst 
case scenarço.  e later researches have decreased thçs lçmçt to 3.55 b/v [13]. EB can compress the connectçvçty of the 
mesh to near optçmal rates that çs normally around 3 b/v.

Trçangle Mesh Compressçon çs accepted as one of the most eff çcçent connectçvçty compressçon method even today. Up to 
now, çt çs not challenged serçously. Tutte’s entropy [18] that çs approxçmately equal to 3.25 b/v, stands for a theoretçcal 
upper bound of the entropy of any arbçtrary surface trçangular mesh connectçvçty. A modçfçed versçon of TG98, that çs 
proposed by Allçez and Desbrun [16], matched to Tutte’s theoretçcal upper bound entropy.  ey claçmed that valence-ba-
sed approaches on sçngle rate mesh compressçon algorçthms dçsplays optçmal compressçons.  çs achçevement, reachçng 
optçmum level on sçngle rate mesh compressçon, led researchers to work on progressçve methods.

Table 1 Notes on Pçoneerçng Algorçthms
Method Connectivity (b/v)

GC - Deering’95 [2] Triangle Strip 8 – 11
TS - Taubin & Rossignac ’98 [4] Spanning Tree 6 max – 2.5 to 6
EB - Rossignac ’99 [5] Triangle Traversal 4 max - 2.1 on average
Touma & Gotsman ’98 [3] Valence 2.3 on average

REFERENCES
[1] Botsch, M., Pauly, M., Rossl, C., Bçschoff , S., & Kobbelt, L. (2006, July). Geometrçc modelçng based on trçangle meshes. In 

ACM SIGGRAPH 2006 Courses (p. 1). ACM.



140

[2] Deerçng, M. (1995, September). Geometry compressçon. In Proceedçngs of the 22nd annual conference on Computer graphç-
cs and çnteractçve technçques (pp. 13-20). ACM.

[3] Touma, C., & Gotsman, C. (2000). U.S. Patent No. 6,167,159. Washçngton, DC: U.S. Patent and Trademark Off çce.

[4] Taubçn, G., & Rossçgnac, J. (1998). Geometrçc compressçon through topologçcal surgery. ACM Transactçons on Graphçcs 
(TOG), 17(2), 84-115.

[5] Rossçgnac, J. (1999). Edgebreaker: Connectçvçty compressçon for trçangle meshes. IEEE transactçons on vçsualçzatçon and 
computer graphçcs, 5(1), 47-61.

[6] Chow, M. M. (1997, October). Optçmçzed geometry compressçon for real-tçme renderçng. In Vçsualçzatçon’97., Proceedçngs 
(pp. 347-354). IEEE.

[7] Bajaj, C. L., Pascuccç, V., & Zhuang, G. (1999). Sçngle resolutçon compressçon of arbçtrary trçangular meshes wçth proper-
tçes1 çs research çs supported çn part by grants from NSF-CCR-9732306, NSF-KDI-DMS-9873326, DOE-ASCI-BD-485, 
and NASA-NCC 2-5276.1. Computatçonal Geometry, 14(1-3), 167-186.

[8] Maglo, A., Lavoué, G., Dupont, F., & Hudelot, C. (2015). 3D mesh compressçon: Survey, comparçsons, and emergçng tren-
ds. ACM Computçng Surveys (CSUR), 47(3), 44.

[9] Lç, J., & Kuo, C. C. (1998, October). A dual graph approach to 3D trçangular mesh compressçon. In Image Processçng, 1998. 
ICIP 98. Proceedçngs. 1998 Internatçonal Conference on (Vol. 2, pp. 891-894). IEEE.

[10] Dçaz‐Gutçerrez, P., Gopç, M., & Pajarola, R. (2005, September). Hçerarchyless Sçmplçfçcatçon, Strçpçfçcatçon and Compressçon 
of Trçangulated Two‐Mançfolds. In Computer Graphçcs Forum (Vol. 24, No. 3, pp. 457-467). Blackwell Publçshçng, Inc.

[11] Gumhold, S., & Straßer, W. (1998, July). Real tçme compressçon of trçangle mesh connectçvçty. In Proceedçngs of the 25th 
annual conference on Computer graphçcs and çnteractçve technçques (pp. 133-140). ACM.

[12] Kçng, D., & Rossçgnac, J. R. (1999). Guaranteed 3.67 v bçt encodçng of planar trçangle graphs.

[13] Gumhold, S. (2000). New bounds on the encodçng of planar trçangulatçons.

[14] Isenburg, M., & Snoeyçnk, J. (2000, July). Face Fçxer: Compressçng polygon meshes wçth propertçes. In Proceedçngs of the 
27th annual conference on Computer graphçcs and çnteractçve technçques (pp. 263-270). ACM Press/Addçson-Wesley Publçs-
hçng Co.

[15] Mamou, K., Zaharça, T., & Prêteux, F. (2009). TFAN: A low complexçty 3D mesh compressçon algorçthm. Computer Anç-
matçon and Vçrtual Worlds, 20(2‐3), 343-354.

[16] Allçez, P., & Desbrun, M. (2001, September). Valence‐Drçven Connectçvçty Encodçng for 3D Meshes. In Computer graphçcs 
forum (Vol. 20, No. 3, pp. 480-489). Blackwell Publçshers Ltd.

[17] Rossçgnac, J., Safonova, A., & Szymczak, A. (2003). Edgebreaker on a Corner Table: A sçmple technçque for representçng and 
compressçng trçangulated surfaces. In Hçerarchçcal and geometrçcal methods çn scçentçfçc vçsualçzatçon (pp. 41-50). Sprçnger, 
Berlçn, Heçdelberg.

[18] Tutte, W. T. (1962). A census of planar trçangulatçons. Canad. J. Math, 14(1), 21-38.

[19] Peng, J., Kçm, C. S., & Kuo, C. C. J. (2005). Technologçes for 3D mesh compressçon: A survey. Journal of Vçsual Communç-
catçon and Image Representatçon, 16(6), 688-733. 


	IMSEC2017_Proceedings_Book_Draft (1) 198
	IMSEC2017_Proceedings_Book_Draft (1) 199
	IMSEC2017_Proceedings_Book_Draft (1) 200
	IMSEC2017_Proceedings_Book_Draft (1) 201
	IMSEC2017_Proceedings_Book_Draft (1) 202

